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We calculate one-electron energy levels in potentials derived from the solution of the atomic 
Thomas-Fermi-Dirac equation. A local exchange potential is used. Corrections are made to a previous 
theory, which joins a TFD density to a quantum mechanical electron density near the nucleus, where 
the Thomas-Fermi-Dirac density has an incorrect singularity. Use of a potential derived from this 
theory leads to improvement in inner-shell energies. Changes in the potential, suggested in the literature 
as being reasonable for valence electrons, do not always give the expected improvement. Nor does 
naively correcting for self-energy lead to improved one-electron energy levels in general. 

Es werden Einelektronen-Energieniveaus beziiglich Potentialen, die sich aus der Thomas-Fermi- 
Dirac Gleichung ergeben, berechnet, wobei ein lokales Austauschpotential benutzt wird. Es ergeben 
sich Korrekturen gegentiber einem frtiheren Verfahren, bei dem einerseits mit einer TFD Dichte 
und andererseits der quantenmechanischen Dichte in der Umgebung des Kernes, wo das TFD-Modell 
ein falsches Verhalten liefert, operiert wird. Auf diesem modifizierten Wege erh~ilt man ein Potential, 
das zu besseren Funktionen ffir die inneren Schalen fiihrt. Dagegen ergeben iiblicherweise bentitzte 
Potentialgnderungen fiir die Valenzelektronen, ebenso wenig wie naheliegende Korrekturen fiir die 
Selbstwechselwirkung, nicht die erstrebten Verbesserungen. 

1. Introduction 

Recently,  we have been in teres ted in ca lcula t ing  one-e lec t ron energies and  
wavefunct ions  in po ten t ia l s  der ived f rom the solut ion of the T h o m a s - F e r m i - D i r a c  
equat ions  for molecules.  Hopeful ly ,  this could  give results c o m p a r a b l e  to those  of 
H a r t r e e - F o c k  ca lcula t ions  bu t  wi thout  the necessi ty of eva lua t ing  two-e lec t ron  
integrals  or  i te ra t ing  to  self-consistency. The poten t ia l  used was the e lect ros ta t ic  
po ten t ia l  which is the  so lu t ion  to the T F D  equa t ion  (see Eqs. (6) et seq. below) 
plus  an  exchange po ten t ia l  p r o p o r t i o n a l  to the 113 power  of  the T F D  electron 
density.  The  po ten t ia l  was modi f ied  far f rom the nuclei  to give the p r o p e r  behav io r  
for an e lect ron mov ing  in the field of the nuclei  and  all the e lect rons  bu t  one. 

The  results  [1] were qua l i ta t ive ly  correct ,  but  definitely inferior  in accuracy  
to  the  Ha r t r ee -Fock .  In  par t icu la r ,  inner  shell o rb i ta l  energies were too  high (by 
2 a.u. for the Ar  l s  electrons,  for instance). W e  thus want  to  invest igate  improve-  
ments  in the potent ia l ,  test ing these on a t o m s  for s implici ty,  but  requi r ing  tha t  the 
improvemen t s  be app l i cab le  to the mo lecu la r  p r o b l e m  wi thou t  increas ing the 
complex i ty  of the calcula t ion.  (This rules out  use of  the Weizsacker  cor rec t ion  [2], 
for instance.) 

* Supported by National Science Foundation under grant GP-20718. 
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It is well known that the Thomas-Fermi (TF) and Thomas-Fermi-Dirac 
(TFD) theories [31, while giving a roughly correct idea of the electron density 
for atoms, suffer from several serious deficiencies. One of these is that, because 
of the breakdown of the assumptions of the theory near a Coulombic singularity, 
they lead to an electron density which goes infinite as r -  3/z instead of approaching 
a constant value as does the correct quantum mechanical density. This suggested 
to Ashby and Holtzman [4] and to the present author [5] the idea of using a 
density with the proper behavior for small r, and joining it to a density obtained 
from solution of the TF or TFD equation for larger r. The modified electron 
density led ot improved values for several electronic properties in the atomic I-5] 
and molecular [-6] cases. It was thought that the modification mentioned could 
improve the potential as it did the electron density. Examination of the modified 
theory [-5] from the point of view of the potential revealed an inconsistency. In 
the next section, we give a slightly changed theory which is free from this problem. 
In Section 3 we calculate eigenvalues in the resulting modified potential. 

Recently, Schwarz I-7, 8] has pointed out that the Coulomb and exchange 
energies of the T F D  theory actually both include the electrostatic interaction 
of each electron with itself, and that this self-interaction is a large quantity for 
atoms (larger [-8] than the true exchange energy) where the electrons are localized. 
While the self-energy terms cancel out in the expression for the total energy, a 
modification in the potential seen by a single electron, with which we are concerned, 
is clearly called for. We investigate some simple corrections of this kind in Section 4. 

The orbital energies for the valence shell electrons tended to be too 
low in our preceding work. In this connection, one can argue 1-9] that the 
exchange potential employed should be reduced by a factor of 2/3 for these 
electrons. The exchange potential used by us, given in terms of the density ~ as 
Va = (3/2)(31re) 1/3 e~ 1/3, may be derived as the m e a n  exchange potential for the 
free-electron gas. However, for electrons with the maximum momentum, i.e., in 
the highest filled energy state, the same theory gives the exchange potential as 
(3/re) 1/a eQ 1/3. This potential has been used successfully [-9] to describe atomic 
valence electrons, and for all the electrons 1-81 in Hartree-Fock-Slater calculations 
(where the exchange interaction is approximated by a local exchange potential). 
The effect of modifying Va in this way is investigated in Sect. 5. 

2. Modified Thomas-Fermi-Dirac Theory 

For  an atom, let the electron density Q(r) be given from r = 0 to r = rc, and let 
the electron density for r > r c be varied to minimize the energy. Since we will use 
quantum statistical theories for the energy expression, we may anticipate that the 
outer boundary of the atom may be at a finite distance. We denote it by r 0, and 
minimize the energy with respect to r o as well as the density for r > r c. The value 
of rc is also to be determined. 

The following conditions are imposed: (1) Continuity of ~ at r = r~; (2) conti- 
nuity of d~/dr  at r = r~; (3) normalization of the total electron density; (4) vanishing 
of the electrostatic potential at r = r 0; (5) vanishing of the electric field at r = r 0. 
According to the quantum statistical theories [3] the kinetic energy is given by 

~kQ s/3 dE and the exchange energy by - ~  g,Q*/3dz. Then the part of the energy 
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which depends on the electron density for r > rc is 

ro  ro  ro  

E = - Z e 2  S o r - ' d z  + J e  2 ~ Q r - l d ' c - ; ~ a  I Q 4/3d'c 

. . . . . .  (1) 
ro  t o  Yo 

+~k S ~ "  d~ + 1/2e2 $ ~(r) d~ S 0(r')d~' I t -  r'l-' �9 
r e  re  r e  

Here,  Z is the nuclear  charge, J is the total  electron density conta ined  in the 
sphere r < rc, and the values of  the constants  in (1) are 

;4, = 3/4(3/r01/3 e z (2) 

and  
~k = 3/10(37r2) :/3 e2ao,  (3) 

where a0 is the Bohr  radius. The normal iza t ion  condit ion for the total  electron 
density is 

rO 

(Z - J )  e = e ~ e d e .  (4) 
r e  

We minimize  the energy of Eq. (1) keeping the quant i ty  (4) constant  by means  of a 
Lagrange  mult ipl ier  2. The  result is 

- eZ(Z - J )  r - 1  - -  4/3 ZaO 1/3 -1- 5/3 ~kO 2/3 "}- e z ~ dz '  e(r ' ) [ r  - r ' [-1 + Re -- 0 .  (5) 

Since the electrostatic potent ia l  is 

V =  (Z  - J )  r -1 - e~ dz '  Q(r') [r - r ' [-1 (6) 

we can rewrite the equat ion  as 

5/3 ~/~02/3 - 4/3 ;4~Q 1/3 4- e(2 - V) = 0 .  

Combin ing  this with the Poisson equat ion  gives a second order  non-l inear  
differential equa t ion  for V or 4. We go over  to the usual dimensionless variables 

x = r / p  (7) 
and 

= ~ee  ( v -  ,~ + ~ ) ,  (8) ~p 

where 
It = 1/4(37z) 2/3 (2Z) -1/3 a o (9) 

and  
z~ = 4zz~/15zke .  (10) 

The  differential equat ion  for r > rc is the usual T F D  equat ion  

~p" = x[(~p/x) 1/2 + floJ 3 , (11) 
where 

flo = Zo(#/ Z e) 1/2 (12) 

and the density is given by 
Z 

-- 47tit3 [(lp/X) 1/2 q- r i o ]  3 . (13) 

1" 
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Here,  pr imes mean  differentiation with respect  to x. The normal iza t ion  condi t ion 
is then 

XO 

Z - J = Z ~ (lp"/x) x 2 d x  = Z (xo tP '  o - ~Po - xc~"  + ~Pc), (14) 
Xe  

where subscripts  0 and c mean  values at x o and Xc. 
We now have to de termine  r o by minimizing the energy expression (1) with 

respect  to this quanti ty.  Because of the condi t ions (1) and (2) on the density, the 
differential equat ion  determines  0 for all r > G, independent ly  of  r o. Then  we need 
consider  only the explicit occurrences  of r o in Eq. (1). Thus  

d E ~ d r  o = 0 = ( -  Z + J )  e 2 0 o  _ ZaO~/3 + ~k05/3 
ro 
r o  

+ e20o ~ 0(r') d# l ro  - r'1-1 �9 
re  

Here  0o is the value of the densi ty at r = r o. The  last integral  is just  ( Z  - J ) / r o ,  so 

0 o = ( z . / z 0  3 (15)  

which is eight t imes the value for the unmodif ied  T F D  theory. 
N o w  we impose  the condi t ions  tha t  V and d V / d r  must  vanish at the bounda ry  

of the a tom,  r =  r o. In tegra t ing  the Poisson  equa t ion  inward to some r >  re, 
we have 

ro ro  x o  

v = e  ! 4 r c r 2 o d r - e  r ~ 4 ~ r r o d r = e r - a  5 x Zxv0"dx  

XO 

-- e# -1 5 Z*p"dx = ( e Z / r )  ( X o ~  - ~Po + ~P - x~{~). 
X 

N o w  this mus t  equal  Ze~p / r  + 2 -  ~2 according  to (8), so we have 

Z e  
,z - ~ = 7 -  [XoV0; - ~ o  - x ~ ; ] .  

Since 2, ~ ,  Xo, 'P{~, and 'Po are constants ,  this can hold for all r between r e and r o 
only if 

XotP~ - tpo = 0 (16) 
and 

2 - z~3 = - Z e t p ' o / # .  (17) 

The  condi t ion (16) is au tomat ica l ly  satisfied for the unmodif ied  T F D  theory,  
as is seen by put t ing xc = 0, J = 0, and ~c = 1 in (14). In the present  case, G and 
~o'~ will be chosen to assure cont inui ty  of  q and  do~dr  at  r~, assuming a par t icular  
density Q for r < re. We  mus t  satisfy (14), (16), and (17). The  avai lable pa ramete r s  
are rc and  5~. Combin ing  (14) and  (16) al lows one to calculate r~, and the cut-off 
point  is de termined by normal iza t ion ,  so can no longer  be chosen by the var ia t ional  
criterion. 2 is fixed by (17). 

In  the original modif ied theory  [5], the small-r  density was assumed to be 
tha t  of  the inner  shell electrons. Thus  

2 Z  3 
O( r < G) = - -  e -  2Z~ (18) 
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which corresponds to two Is electrons moving in the field of the nucleus. Then 

J = 211 - e -  2zrc(1 + 2Zr~ + 2Z2rff)]. 

According to (14) and (16), 

1 - Z - l o r  = - xc~P'~ + ~Pc (19) 

and from (13) 

~0c = 1 ( ~ )  1/3 -- /~012 Xc . (20) 

Insertion of (18) into (20) and differentiation allows computation of the right side 
of (19) as a function of r c. Then (19) may be solved numerically for re. When this 
procedure is performed for At, it is found that r~ must be 0.0422 ao and that 
~Pc = 0.7904 and tO'c = -0.1573. If this is integrated outward, the electron density 
remains large out to r o so that it has a large discontinuity at this point, which is 
physically unacceptable. 

To get something more reasonable for this model and to satisfy the condition 
of Eq. (15) for ~o, it is necessary to relax one of the conditions we have imposed. 
For  the density of (18) we substitute c~e-2 Zr with the coefficient c~ to be determined. 
Unlike Ashby and Holtzman [-43, who used the density Q = 7e -pr for r < r C with 
both e and/~ variable, we maintain/~ = 2Z to give the known correct behavior of 
the density at the nucleus (cusp condition) [101. 

Now our procedure is as follows: (i) For  a given e we find x c by demanding 
that (19) be fulfilled. This is done by computing ~ and ~' for different values of x, 
and from them deriving J ,  ~o~, and ~0'~. (ii) Now one has initial values for ~p and ~p' 
and can integrate (11) outward. The integration is stopped at x o such that (16) is 
obeyed. (iii) ~Po and ~p; are now known, and Qo may be computed from (13). If (15) 
is not obeyed, e is changed and the process is repeated until it is. (iv) From ~p;, 2 
may be computed according to (17). Now one knows Vbetween r~ and r o according 
to (8). (v) For  r < r c, V is obtained by integrating the Poisson equation inward, 
using ~ = ee -2  z~. Explicitly, this gives 

7t~ Z 7z~ _ 
V = z ~ - r  [ - l + e - Z Z r ( l + Z r ) ] + - - + r  ~ e  2Zr(l+2Zrc)- Z~(Ip'o-lP'c).k t (21) 

3.  O r b i t a l  E n e r g i e s  in M o d i f i e d  P o t e n t i a l  

Having determined the electrostatic potential V according to the above 
procedure, we add the exchange potential 

V a = 3/2(3/7r) 1/3 e~ 1/3 (22) 

to form the potential to be used in the calculation of one-electron energies. The 
density 0 is e . e  -2 z r  for r < r  c and the TFD density (13) for r>rc .  As we have 
mentioned, Eq. (22) represents an average exchange potential for all the electrons. 
The total exchange energy density (Eqs. (1) and (2)) is - 1/2 eV, ~, the factor of 1/2 
correcting the fact that the interaction between each pair of electrons is otherwise 
counted twice. For  a neutral system, the total potential seen by one electron must 
become Coulombic at large distances from the nuclei. This is assured for the present 
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Table 1. Orbi ta l  energies for F in a.u. (Per cent differences from experimental  results in parentheses) 

Experimental  SCF 1 Unmodif ied Modified 
(Ref. [11]) T F D  (Ref. [1]) T F D  (Section 3) 

ls  - 2 5 . 6  -26 .38  (3.0) - 2 5 .3 8  (0.9) -26 .01  (1.6) 
2s - 1.48 - 1.57 (6.0) - 1.68 (13.5) - 1.63 (10.1) 
2p - 0.96 - 0.73 (6.0) - 0.96 (39.0) - 0.93 (35.0) 

Table 2. Orbital  energies for Ar in a.u. (Per cent difference from experimental results in parentheses) 

Experimental  SCF Unmodif ied Modified 
(Ref. [11]) (Ref. [12]) T F D  (Ref. [1]) T F D  (Section 3) 

ls  -118 .1  -118 .6  (0.4) - 1 1 6 . 4 ( 1 . 4 )  -117 .9  (0.2) 
2s - 12.1 - 12.32 (1.8) - 11.54 (4.6) - 11.66 (3.6) 
2p - 9.25 - 9.58 (3.6) - 9.31 (0.6) - 9.41 (1.7) 
3s - 1.08 - 1.28 (18.5) - 1.08 (0.0) - 1.01 (6.5) 
3p - 0.58 - 0.59 (2.0) - 0 . 6 2 ( . 0 )  - 0.53 (10.0) 

case by replacing V + V, by e r  -1  whenever it falls below er  -1 .  This was done by 
Latter 1 in his computations for a related problem. 

In Table 1 we give orbital energies for F, as derived from the present theory, 
the unmodified TFD theory [1], SCF calculations [11] and experiment [12]. 
The values found for ~ and r c were 356.845 and 0.1015763a 0. An improvement 
for the inner shell electrons due to the modification is evident and expected: 
the error goes from 3.8 % to 1.4 % relative to the SCF result. For  the other electrons, 
the modification also gives improvement, but it is slight for the 2p electrons, 
where the error is most serious. We believe that the fact that the SCF is farther from 
experiment than either T F D  result for ls is a coincidence for this case. Table 2 
gives similar results for Ar. Here, ~ =  3134.98 and re= 0.0476648ao. The K-shell 
energy here is in error by 0.2 % relative to SCF, compared to 1.4 % for the unmodified 
TF D theory. Other energies are sometimes improved, sometimes not; those for 
the outer electrons (M-shell) are relatively little affected. It may be noted that, in 
general, while inner shell orbital energies are lowered by the modification, outer 
shell energies are raised. In addition, the SCF does not reproduce the experimental 
term values as well as either T F D  theory. The average per cent errors for the five 
levels are 5.2 for SCF, 2.7 for TFD and 4.5 for the modified TFD. 

For  the orbitals themselves we give in Table 3 the values of r for which nodes 
and extrema occur in the case of Ar. These are compared with the results of a 
Hartree-Fock calculation. The functions involved are actually r times the true 
radial wavefunctions. Since our method of determining the energies l-l] involves 
outward numerical integration of the one-electron Schr6dinger equation, our 
wavefunctions are less precisely determined at larger r. In particular, their tails 
are inaccurately determined, making it difficult to compute expectation values for 
the orbitals. It is seen that they have roughly the correct shapes. 

1 Latter, R.: Physic. Rev. 99, 510 (1955). The potential  used by Latter was an approximat ion  to 
V + V,; the difference between the approximat ion  and the potential  leads to impor tan t  differences in 
the computed  energy levels as shown in Ref. [1]. 
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Table  3. Charac te r i s t ics  of orb i ta ls  for Ar, d is tances  in a0" 

Orb i t a l  E x t r e m u m  N o d e  E x t r e m u m  N o d e  E x t r e m u m  

i s  0.057 - -  - -  
0.051 

2s 0.045 O. 118 0.34 
0.039 O. 102 0.28 

2p 0.29 
0.24 

3s 0.044 O, 115 0.29 
0.039 0.101 0.25 

3p 0.22 0.42 1.29 
0.19 0.40 1.10 

0.52 1.19 
0.44 1.0 

a Fi rs t  l ine is SCF from Czyzak,  S.J.: Ast rophys .  J. Supp. 65, 7, 53 (1962); second is our  result.  

Table  4. Orb i t a l  energies for Zn, a.u. (Per cent  dev ia t ion  from exper iment  in parentheses)  

Orb i t a l  Expe r imen t  This  ca lcu la t ion  H e r m a n  and  
(Ref. [11]) Ski l lman,  Ref. [13] 

l s  - 3 5 6 . 0  - 3 5 2 . 5  (0.8) --349.2 (1.9) 
2s - 44.4 - 44.2 (0.5) - 42.56 (4.1) 
2p - 38.1 - 39.6 (3.9) - 37.78 (0.8) 
3s - 5.2 - 6.22 (20.) - 4.89 (6.) 
3p - 3.5 - 4.64 (33.) - 3.33 (5.) 
3d - 0.64 - 1.82 (180.) - 0.63 (1.6) 
4s - 0.34 s - 0.51 (48.) - 0.309 (10.) 

It is of interest to compare our results with those of the Hartree-Fock-Slater 
calculations of Herman and Skillman [13], a self-consistent field procedure in 
which a local approximation to the exchange potential is used. Their orbital 
energies are slightly better than ours for the outer shells, but inferior for the rest. 
The results for the orbitals are similar. The positions of the first extremum for 
the five orbitals are 0.057, 0.044, 0.28, 0.044, 0.22. This agrees very well - better 
than our results - with the SCF. The positions of the second extremum for 2s, 3s, 
and 3p are also in good agreement with SCF. 

Finally, we give results for the 30-electron atom: Zn. Table 4 gives our calculated 
orbital energies, experimental ionization potentials, and the orbital energies of 
Herman and Skillman. Again, we do well for the inner shells and poorly for the 
outer electrons. Indeed, the errors for these orbital energies are very large, all 
being much too low. The evidence is, however, that the small-r modification is 
successful in correcting the incorrect behavior of the potential as it affects the inner 
shell electrons, and permits reliable values to be calculated for inner-shell ionization 
potentials. 

4. Self-Energy Corrections 

In this section, we investigate the effect on the one-electron energy levels of 
simple modifications of the Coulomb and exchange potentials, designed to remove 
incorrectly included self-energy terms. These would cancel for a correct Hartree- 
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T a b l e  5. E n e r g y  levels  fo r  A r  ( a t o m i c  uni t s )  w i t h  Va, ( 1 -  2 Z - 1 )  1/3 Va a n d  ( 1 -  2 Z  -1)  V, a c o m p a r e d  

w i t h  S C F  v a l u e s  ~ 

A t o m i c  W i t h  full W i t h  Vex W i t h  Vcx S C F  
o r b i t a l  V~ a n d  Va (1 - Z -1)  a n d  (1 - Z -1)  a n d  resu l t  

Va(1 - 2 Z -  ~)~/3 V.(1 - 2 Z -  ~) 

l s  - 116.4 - 118.1 - 117.4 - 118.60 

2s - 11.54 - 12.97 - 12.70 - 12.32 

2p - 9.31 - 10.78 - 10.52 - 9.58 

3s - 1.08 - 1.76 - 1.64 - 1.28 

3p - 0 .62 - 1.19 - 1.13 - 0.59 

a T h e  C o u l o m b i c  p o t e n t i a l  is m u l t i p l i e d  b y  1 - Z  -~ in t h e  l a t t e r  t w o  cases .  
b C z y z a k ,  S .J . :  A s t r o p h y s .  J. Supp .  65, 7, 53 (1962). 

Fock potential. For the Coulombic potential Vc, a simple and reasonable approxi- 
mation is to multiply the electronic contribution to the electrostatic potential by 
(Z - 1)/Z, Z being the number of electrons [7]. 

The correction to be made on the exchange potential is perhaps more 
problematical. Schwarz [8], following a suggestion of Gombfis [-14], favors 
reducing 0 by ( Z -  2)/Z, noting that only half the electrons have an exchange 
interaction with any given electron. This menas V a is to be multiplied by 
(1 -2Z-1) 1/3. We think it is equally reasonable to argue that the potential itself 
should be multiplied by (1 - 2 Z - 1 ) .  We may also note that Schwarz's V, is only 
2/3 of ours. Whether the factor of 3/2 does or does not appear in Va may depend [-7] 
on at what stage in the derivation one introduces the flee-electron-gas model (but 
see next section). Irrespective of the coefficient of 01/3 in the exchange potential, 
the factor of (1 - Z-1) multiplying V c assures that the overall potential approaches 
r-1 for large r as it should, with no additional modification. 

In Table 5 we give the energies of the occupied one-electron levels for Ar, 
calculated with the unmodified TFD, with SCF, and the energies calculated when 
the Coulombic potential is multiplied by 1 -  Z -1 with the exchange potential 
reduced either by (1 - 2 Z  -1) or by (1 - 2 Z - 1 )  1/3. All energies are in atomic units 
(one a.u. = 27.21 eV). 

It may be seen that the energies with the full Vc and Va (and V replaced by r - 1 
when it falls below r -1) are in fair agreement with the SCF values (average 
error = 6 %). Modification of Vc and V, in either way lowers all the energy levels 
and makes the overall agreement worse, although improving the ls and 2s 
energies. We feel that the problem here is that the unmodified TFD model puts 
too much electron density near the nucleus. (The modification of Sections 2 
and 3 lowers this density markedly.) Then the effective nuclear charge is too low 
near the nucleus, so that orbital energies will be too high for orbitals whose 
density is large here. Reducing V~ raises the effective charge everywhere, improving 
inner shell orbitals but overcompensating errors in others. 

The situation may be contrasted with calculations such as those of Schwarz [-8] 
or Herman and Skillman [13], where the exchange potential or some modification 
of it is used in SCF calculations to- avoid the complications of the non-local 
Hamiltonian. There, the Coulombic potential includes correct behavior of the 



Quantum Statistical Potentials 9 

electron density near the nucleus. No iteration to self-consistency is involved in 
our work. Still, it is interesting to note that the errors in the orbital energies, 
using the full V~ and Va, are comparable to those made in the approximate 
calculations. Schwarz [8] has given an extensive summary of such results for Ar. 
Our per cent errors are 1.9, 6.3, 2.8, 15.6, and 5.1; only about half of the ten methods 
tried by Schwarz do as well overall. 

A recent article by Slater and Wood [15] discusses SCF calculations using 
local exchange approximations. The reason that good atomic orbitals, but poor 
orbital energies, are obtained in some cases (see end of Section 3) is explained. 
The orbital energy in Hartree-Fock calculations represents the change in energy on 
removal of one electron (Koopmans'  Theorem), whereas in the calculations using 
local exchange potentials the orbital energy is the derivative of total energy with 
respect to the number of electrons. The difference may be written as a power series 
in which the derivative is the leading term, and higher terms may be used to give 
corrections. In the present case, where the potential is not constructed from the 
orbitals, the errors in orbital energies merely reflect the errors in the potential 
itself. 

5. Modifications for the Valence Electrons 

For  some purposes, the valence electrons or electrons in the highest filled 
shell are of greatest interest. Thus we are interested in methods which may give 
reliable values for these. The errors in the present results are serious. We wish to 
explore methods for obtaining better values for the valence electrons, keeping 
in mind that our object is to apply such methods, eventually, to molecules with 
many electrons. 

Errors in our potential for large r are of importance here. In particular, the 
effect of simply putting on a Coulombic tail must be examined. Yonei [16] 
remarked that the resulting discontinuity in d V/dr may be of importance. Since 
we are interested in an electron moving in the field of the nucleus plus the other 
electrons, we could calculate their distribution and potential, and use this potential 
to treat the electron of interest. This automatically gives the correct large-r 
behavior with no discontinuity in d V/dr. 

For  the atom of atomic number Z, one should solve the TFD problem for the 
positive ion of nuclear charge Z and with Z - 1 electrons. Then the electrostatic 
potential from this solution should be used, together with V o derived from the 
electron density of the ion, to compute one-electron eigenvalues. Since the 
boundary conditions for the TFD equation change with degree of ionization [-4] 
we have not done this. If one assumes the density for K § is well-approximated by 
that of Ar, one can use the Ar potential plus er-1 to obtain one-electron energies 
for K. The results were not good: orbital energies were always too low. This 
ignores the contraction of ~ due to the additional nuclear charge, which increases 
the electrostatic shielding. 

As we have mentioned, the exchange potential may be derived by averaging 
the exchange energy expression for an electron in a free-electron gas over all the 
electrons. One can also consider electrons with specific momenta individually, 
without averaging. For  an electron with p = 0, one obtains 2(3/~) 1/3 e~ 1/3 for the 
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potential  representing its exchange interaction with all the others. For  an electron 
with p equal to the Fermi m o m e n t u m ,  one gets half  this. The last result is relevant 
for considerat ion of  valence electrons, which are the highest filled orbitals. It 
may  also be derived f rom the expression for the exchange energy density, ~aO 4/3, 
by  considering the effect of  adding a small number  of  electrons, which must  be at 
the Fermi  momen tum.  The change in exchange energy density with change in 0 is 

d ( -  Xae2Q4/3)/d ( - eo) = 4/3 ZaeQ 1/3 

so that  V, = 4/3 ~aeQ 1/3 for these electrons. 
Mainta in ing the small r modif icat ion of Sections 2 and  3, we change our  

exchange potential  as above. For  F, the 2p energy level goes from - 0 . 9 3  a.u. 
to  - 0.52 a.u., which is equally far f rom the SCF value of - 0.73 a.u. N o w  the 2p 
electrons represent 5/9 of  the total  number ,  so that  the a rgument  for using a 
potential  appropr ia te  to  the top  of  the Fermi  sea is not  well-justified here. For  
Ar, the 3p electrons are 6/18 of  the total, so the si tuation is somewhat  better f rom 
the point  of  view of  justification. Unfor tunately ,  ear is already too high and the 
modif icat ion must  make  things worse. In  fact it goes to  about  - 0 . 3  a.u. 

However ,  for Zn, this modif icat ion leads to e = - 0 . 3 2 2  for the 4s orbital 
energy which is closer to the experimental  orbital  energy than the result of  He rman  
and Skillman. The' 3d energy increased to above - 1. It is for this a tom that  one 
expects this idea to work  best, since (a) the number  of electrons is greatest and  (b) 
the valence electrons are the smallest fraction (1/15) of  the total number.  The 
result is encouraging:  in the future, we hope  to extend these calculations to larger 
a toms  and then to  molecules, to  see whether  the results for Zn are typical. 
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